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Abstract

This paper explores the feasibility of detecting damage within structures
such as air foils by application of eddy current based techniques and reduced
order modeling. To identify the geometry of a damage, an optimization
algorithm is employed which requires solving the forward problem numerous
times. Therefore, the forward algorithm must be solved with extremely fast
and accurate solution methods. In constructing these forward methods, we
employ reduced order Proper Orthogonal Decomposition (POD) techniques.

The POD technique is a method which creates an “optimal” ordered
basis in the sense that information captured in the first few basis elements is
maximized. One then uses a fixed number (based on a quantitative formula
for percentage energy captured) of the first few basis elements, called the
reduced POD basis, in the forward algorithm. Since one uses only a small
number of basis elements, one is able to create a fast forward algorithm that
accurately represents the relevant information.

In this paper, for illustrative purposes and proof-of-concept, we consider
rectangular “cracks” parameterized by a vector parameter q representing the
length, thickness, depth, center, etc. of the damage. We attempt to recap-
ture the parameters of a damage assuming we have access to the magnetic
vector potential A (which is not pratical experlmentally) or the magnetic
flux density B. Our analysis uses simulated data A or B with normally dis-
tributed noise to represent corrupted experimental data. When recapturing
the length or thickness of a damage using the component of the magnetic
flux density orthogonal to the eddy current flow in the sample, the methods
are shown to be efficient and robust even with data containing 10% relative
noise.



1 Introduction and Problem Formulation

In the field of nondestructive evaluation, new and improved techniques are
constantly being sought to facilitate the detection of hidden corrosion and
flaws in structures such as air foils and pipelines. Many electromagnetic
techniques and instruments already exist to aid in the detection of hidden
flaws and corrosion. Some of the devices and techniques in use today in-
volve the magneto-optic/eddy current imager [8, 24] in conjunction with
eddy current imaging [9, 10], the self-nulling eddy current probe [26] along
with conformal mapping techniques [27], and the SQUID (Superconducting
Quantum Interference Device) through the use of either injected current
methods or induced eddy current methods [5, 7, 12, 21, 23, 25]. We attempt
to contribute to these techniques already in use by decreasing the compu-
tational time required to detect and characterize a damage in a material
explicitly. In other words, given data obtained from a measuring device, we
seek to locate and parameterize the damage while minimizing the amount of
time required to complete this task. To this end, we formulate and develop
a problem complete with computational methods and results.

The proposed computational approach is based on approximation ideas
from the Karhunan-Loeve or Proper Orthogonal Decomposition reduced or-
der methodology. Recently these techniques have been successfully used in
reduced order methodologies for feedback control design [1, 6, 14] as well
as open loop control design [20]. Here we propose for the first time the
use of such techniques in electromagnetic based damage detection problems.
Initial findings reported below are most encouraging.

1.1 Description of Problem

Depending upon the application, different measuring devices and techniques
are used in nondestructive evaluation. An advanced method of damage
detection uses a device such as the SQUID or self-nulling probe as the sensor
for eddy current methods. One way in which the eddy current method is
implemented is by placing a thin conducting sheet carrying a uniform current
above or below the sample. The current within the sheet induces a magnetic
field perpendicular to it that produces a current within the sample, called
an eddy current. When a flaw is present within the sample, the flaw disrupts
the eddy current flow near the flaw and this disturbance is manifested in the
magnetic field detected by the measuring device. Using these measurements
of the magnetic field, we attempt to reconstruct the geometry and location
of the flaw explicitly.



To test the feasibility of reconstructing the geometry of the damage,
we consider a two-dimensional problem in which the damage (which we
shall refer to as a “crack”) is rectangular in shape. In the two-dimensional
problem, we assume we have uniformity in the direction of the current flow
in the conducting sheet which we label the z direction, denoting the width
of the sample. The z direction denotes the length of the sample while the y
direction denotes the height or thickness of the sample. To further simplify
the test problem, we disregard the boundary effects of the materials in the
z direction (sample length) by assuming an infinite sample and conducting
sheet in that direction. If the conducting sheet and sample are not of infinite
extent, we have to take into account the discontinuities in the current flow
at the boundaries. Because we are considering materials of infinite extent,
we will construct our forward problem by focusing on a small “window”.
We will center this “window” such that the left boundary of the “window”,
at location x = 0, is positioned in the center of the crack in the z direction,
i.e. the crack is symmetric around the yz plane at x = 0. Therefore, at both
the left and right boundaries of the “window” we assume evenly symmetric
boundary conditions to account for the symmetry of the crack as well as
the infinite extent of the sample and conducting sheet in the z direction. A
schematic of the resulting two-dimensional problem is depicted in Figure 1
where it is assumed that the sample (which is 20mm thick) is composed of
aluminum and the conducting sheet (which is 0.1mm thick) is made up of
copper.

Although certain simplifications are made in the two-dimensional case,
the two-dimensional analysis is relevant to special three-dimensional cases.
In a “true” three-dimensional case, the sample will be of finite length (finite
in the z direction). However, if the crack is located “far enough” away from
the boundaries of the sample in the z direction, we can assume the boundary
effects are not sufficiently significant to effect the measurements taken by
a SQUID (or similar device). Therefore, the infinite extent of the sample
in the test problem will fairly accurately portray the finite sample in the
three dimensional case. Similarly, in the two-dimensional test problem, we
assume the sample along with the damage or crack to have an infinite width.
However, in the three-dimensional case, the crack will have a finite width.
To account for this, we assume that data will be taken by scanning along
the length of the sample on a line fixed at a certain height and width using
a SQUID. If the line upon which we are scanning is fixed in the z direction
(along the width of the sample) so that the line is “far enough” away from
the edges of the crack in the z direction (along the width of the crack), we
should still be able to use the two-dimensional analysis to determine the
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Figure 1: 2-D Schematic of Problem

feasibility of identifying length, thickness (or height) and depth of the crack
with SQUID data.

1.2 The Use of Phasors

As mentioned in the previous section, a conducting sheet carrying a uni-
form current is placed above the sample to induce eddy currents within the
sample. Without loss of generality, we assume the source current has the
form

J, = Jycos(wt)k = JyRe(e™?)k.

This current produces a magnetic field H(z,y,t) described by Maxwell’s
equations. At the surface of the sample, the magnetic field has the same
time dependence as the source current,

H(z,y,t) = H(z,y)cos(wt).

However, as the magnetic field penetrates into the sample, a phase lag results
due to the finite cnductivity of the aluminum. In other words, the magnetic



field takes the form

H(z,y,t) = H(z,y)cos(wt + 0(z,y)),

where the term 6(z,y) takes into account the depth of penetration. Hence,
ﬁ(w,y) is a vector field quantity which keeps track of the magnitude and
direction of H at each point in space while 6(z,y) denotes the phase shift
from the original cosine wave at the same point in space. Consequently,
the quantities of interest are H(z,y) and 0(z,y). To keep track of these
quantities, denoting the magnitude, direction, and phase lag, we can use
vector phasors.

| matai nary

Real

Figure 2: Illustration of Phasor Notation

A phasor [4, 22] is a complex quantity which completely defines the mag-
nitude and phase shift for H(xz,y,t). Figure 2 illustrates how the magnitude
and phase are defined through the complex number. The magnitude is rep-
resented by the radius of the circle, and the phase is the angle which the
complex vector makes with the real axis. Thus, the vector phasor H and
the explicit time dependent field H(z,y,t) are related in the following way

H(z,y,t) = Re(H(z,y)e™") (1)

in which all of the phase information and direction is captured in the com-
plex vector phasor H. For this reason, in the remainder of the paper we
will assume no explicit time dependence in the fields examined, but instead
consider the fields to be complex vector phasors, denoted H, B, etc, and



account for the time dependence of the fields through phase shifts contained
in the phasors.

1.3 Formulation of Forward Problem

Maxwell’s equations are the basis of the derivation in the forward problem.
However, since we are expressing the various fields in terms of phasors which
depend on space coordinates but not explicitly on time, we want to express
time-dependent Maxwell’s equations in terms of phasors. We first exam-
ine the explicit time-dependent Maxwell’s equations. The usual system is
written as

V-B =0, (2)
V.-D =y, (3)
o _
=——B 4
and 3
H=J+ -D.
V x + p (5)

To examine the relationship between the explicit time-dependent Maxwell’s
equations and Maxwell’s equations in terms of phasors, we examine the re-
lationship in equation (1). Based upon this relationship, the time derivative
for H(x,y,t) (and similarly other fields) is given by

%ﬁ(x, y,t) = iwRe(H(z, y)e"). (6)

Substituting the appropriate form of equations (1) and (6) into equations
(2) - (5), we obtain the phasor form of Maxwell’s equations

V-B =0, (7)
V-D = p, (8)
V x E = —iwB, (9)
and
VxH=J+iwD. (10)

Thus equations (7) - (10) hold for our entire “window”, denoted £2.
We could further simplify equations (7) - (10) by making some observa-
tions. First of all, since our system is considered to be electrically neutral,



the internal electric charge density p equals zero. Secondly, by examining
the conductivity ¢ of aluminum and copper and by using Ohm’s law

J =0E,
we can argue J = 107E. On the other hand, the constitutive law
D = ¢E, (11)

indicates D ~ 10~ !'E. We are using a frequency of 60Hz in our problem
which yields an angular frequency of approximately 3 x 102rad/sec, and thus
wD = 10 °E. Consequently, in the sample and conducting sheet J >> wD
which implies we could assume wD = 0 in both the sample and conducting
sheet in equation (10). In other words, the term wD on the right side of
equation (10) is only significant in the air. Thus the form of Maxwell’s
equations we will use in the computations are given by

V-B =0, (12)
V-D =0, (13)
V x E = —iwB, (14)
and
VxH=J+iwD (15)

where, as noted above, the term iwD is only significant in the air. However,
we shall retain this term in all of € since this is done in the commercial
simulator (Ansoft) that we employ below.

Based upon equation (12) and vector null identities, we can represent B
as the curl of a vector potential A, B = V x A, where A is referred to as
the magnetic vector potential. The forward problem will be formulated in
terms of this magnetic vector potential from which we can derive both the
magnetic field H and magnetic flux density B. Accordingly, we want to com-
bine Maxwell’s equations to obtain equations in conjunction with boundary
conditions which completely determine the behavior of the magnetic vector
potential A in € defined by

Q= {(z,y,2) € R®: 0mm < z < 50mm, —35mm < y < 35mm}.
Using the identity B = V X A in equation (14), we have

VXE=—-iw(VxA) or Vx(E+iwA)=0.



Again using vector null identities, the cross product of E + iwA being zero
implies E+4{wA can be written as the gradient of a scalar potential, denoted
by ¢. As a result,

E = —iwA — V¢. (16)

Finally, we can use equations (15) and (16) in conjunction with Ohm’s
law, the constitutive law given by (11) and the constitutive law H = %B,
to obtain

V x Gv X A) = 0(—iwA — Vo) + iwe(—iwA — V¢) Vz,y e Q. (17)

In the above equality, the right side represents the total current density J
which is made up of the source current density, eddy current density and
displacement current density. The source current density Jg is due to differ-
ences in electric potential; therefore, Jg is represented by the term —aV¢.
The term —iwo A represents the eddy current density, Je, produced due to
a time-varying magnetic field. Finally, the displacement current density, Jq,
due to time-varying electric fields is given by the term iwe(—iwA — V).

Since equation (17) contains two unknowns, A and ¢, we need an ad-
ditional equation to uniquely determine solutions of the system. In the
literature [4, pp. 327-328],[11, pp.219-221] a “gauge” is commonly chosen
which uniquely defines both A and ¢. In time-varying problems a gauge
satisfying the Lorentz condition

o¢

is most often imposed. However, based upon the geometry in our test prob-
lem, V - A can be seen to be zero. This follows since the only nonzero
component of A is As, the component of A in the z direction (the direction
of the current density J). Therefore, V- A = % = 0 since we have unifor-
mity in the z direction. With V- A = 0, imposing the Lorentz gauge in this
problem would imply ¢ is constant in time. This is not a realistic assump-
tion in this test problem since we have an alternating current. Instead we
use the relationship

T= / J-nda = / (0(—iwA — V) + iwe(—iwA — V) -nda  (19)
CS CcSs
between the total current I flowing in the conducting sheet (cs) and the

total current density J within the conducting sheet. This is the second
equation used in the software package Ansoft Maxwell 2D Field Simulator



which we use in our computational efforts. Therefore, we have two coupled
equations (17) and (19) in which the magnetic vector potential A can be
uniquely determined if appropriate boundary conditions are specified. We
remark that the usual imposition of a Lorentz gauge decouples the equations
for the potentials A and ¢ [11, p.220]. Since we are following the Ansoft
formulation, we do not do this here.

Recall, from Section 1.1 that we assume evenly symmetric £ boundaries
due to the symmetry of the crack and the infinite extent of the materials. In
other words on the z boundaries, we assume the fields on both sides of the
boundary oscillate in the same direction. To account for the even symmetry,
we assign Neumann boundary conditions to these boundaries. In a similar
manner, we assume the y boundaries are “sufficiently far” away from the
sample and scanning area to not effect the overall measurements. Indeed,
as the magnetic vector potential moves farther away from the sample and
conducting sheet, A tends to zero. Therefore, on the y boundaries, we assign
Dirichlet boundary conditions to indicate the boundary is “sufficiently far”
away from the materials so that A ~ 0. Therefore, the magnetic vector
potential A is determined according to

V x <1V X A) = o(—iwA — V¢) + iwe(—iwA — Vo) Vz,y € Q.
7

and
I:/ J.nda:/ (0(—iwA — V) + iwe(—iwA — V¢)) - nda
with
A(z,-35) = 0 = A(z,35)
VA nlgy = 0 = VA nfsy).

2 Computational Method

Our goal here is to characterize the geometry of a hidden i.e., subsurface,
crack within a sample. To achieve this goal, we must develop fast and
efficient forward computational methods to be used in the inverse problem
possibly numerous times. To this end, we examine reduced order Karhunan-
Loueve or Proper Orthogonal Decomposition (POD) techniques.

The POD technique is an attractive order reduction method, because
basis elements are formed which span a data set consisting of experimental
or numerical simulations in an “optimal” way. Since the POD basis is formed
such that each basis captures important aspects of the data set, only a small



number of POD basis elements are needed in general to describe the solution
[20]. Consequently, the POD method will enable us to formulate a fast
forward algorithm which still describes the solution accurately with only a
few basis elements.

2.1 The POD Method

We summarize the use of the POD method in the context of the inverse
problem described above. For further details on the general POD method,
we refer the reader to [1, 2, 3, 6, 13, 15, 16, 17, 18, 19, 20] and the ex-
tensive list of references contained therein. The first step in forming the
POD basis is to collect “snapshots” or solutions across time, space or a
varied parameter. In our case, we let q be the vector parameter character-
izing physical properties of the damage, for example, the length, thickness,
depth, center, etc. of the damage. For an ensemble of damages {qj}jy:sl,
we obtain corresponding solutions, {A(qj)}j-v:sl, of (17), for magnetic vector
potentials which we call our “snapshots”. Alternatively, from the solution
set {A(qj)};-vzsl, we can obtain the magnetic fluxes {B(q]-)};-vzs1 and instead
use these as our “snapshots” if we wish to treat magnetic fluxes as our basic
state variable. However, for our explanation, we will consider snapshots on
A = (0,0, A3) and hence our explanation will be for the scalar case. For the
vector case, we would simply proceed componentwise [1, 6, 20]. Without loss
of generality, we will denote the vector A by its scalar nonzero component
A, i.e., the A3 component of A.
As explained in [20], we seek basis elements of the form

®; = Vi(j)Alqy) (20)

where the coefficients V;(j) are chosen such that each POD basis element
®;,0=1,2,..., Ng, maximizes

N,
1 8

A Z I(A(q;), @i)L2(Q,C)|2
S ]:1

subject to (B;, ®;) 20,0y = ||®i]|* = 1. Tt is thus readily seen using standard
arguments that the coefficients V;(j) are found by solving the eigenvalue

problem
CV =\V



where the covariant matrix C' is given by
1
[Clij = E(A(Qi)aA(qj»L‘z(Q,C)'

Since the matrix C' is a Hermitian positive semi-definite matrix, it pos-
sesses a complete set of orthogonal eigenvectors with corresponding real
eigenvalues. We order the eigenvalues along with their corresponding eigen-
vectors such that the eigenvalues are in decreasing order,

AL > X > > Ay, > 0.

We then normalize the eigenvectors corresponding to the rule

_ 0
R

Then the i* POD basis element is defined by (20) where V;(j) represents
the elements of the i** eigenvector of C. It can also be shown that {@i}fisl
are orthonormal in L?(Q,€) and span{®;}Ys, = span{A(qj)}é-V:sl. Indeed,
given any A(q;), we have

N,
A(qy) = ) arlq;) P
k=1

where
ax(aj) = (A(aj), k) r2(0,0)-
To determine the reduced number, N, of POD basis elements required

to accurately portray the ensemble of “snapshots” {A(qj)};-v:sl, we compute

N Ng
DN/
=1 iy

which represents the percentage of “energy” in 31)cm{A(qj)}§V:s1 that is cap-
tured in span{q)j)};y:l. The reduced basis consists of only the first N ele-
ments ®; where N is chosen according to the percentage “energy” desired.
From these N POD basis elements, we obtain the approximation A% (q;)
for A(q;) such that

N
A(qj) = AN(q;) = ) arlq;) @
k=1

1

]



To approximate A™(q) where q is a given parameter not in the set
{q; };-v:sl, we extend the approximation formula to obtain

N
AN(q) =" ax(q) @
k=1

where

(@—q;) - (qj+1 — qj)
|Qj+1 - (1j|2

ak(q) = ax(qj) + [ak(qj+1) — ax(ay)]

with q; and q;41 “nearest” neighbors to q.
Once we have the solution A" (q), we can recapture the explicit time
dependence by referring to the formula (1) in Section 1.2 given by

A(z,y,t) = Re(A(z,y)e™?).

2.2 Inverse Problem

Using the methodology presented in the previous section for calculating the
magnetic vector potential A given specific crack parameters, we shall try
to identify these crack parameters. In identifying the geometry of a crack,
we would like to estimate the length, thickness, center and depth of a crack
within a sample. To determine the feasibility of this task and to illustrate
the use of the reduced model methodology, we first try to estimate a single
parameter, say length or thickness, while assuming the values of the other
parameters are known quantities. If this can be successfully done, further
efforts at estimating two or more parameters can be pursued.

2.2.1 Least Squares Criterion

In our trial runs, we assume we have access to various types of data, such as
the A field or the B field, in various points of space, which we call the set W.
We compare and contrast the accuracy to which we can estimate the given
parameter or parameters based upon the field i.e., A or B, to which we have
access as well as what an appropriate choice of the points in ¥ should be.
For example, we assume the unknown parameter set contains only values
of the parameter lengths [. That is, we want to estimate only the length
of the crack assuming the thickness, center, and depth are fixed quantities.
Given an arbitrary length [, we can generate a solution A ([), the computed
solution A" as described in Section 2.1. We can compare the computed
solution to the experimental or simulated data A(l*) for the exact parameter

11



value [*. For the examples presented here, we choose the parameter values
for equations (17) and (19) given in Table 1. However, for the system values

Table 1: Parameters Used in Equation (17) for Computational Results

Parameter Value
w 2 f
f 60H z
Oal 3.72x 1072
Ocu 5.80 x 107 2
Oair 0%
I 1A

given, the order of magnitude of A is 10*8%1’; therefore it is desirable to
scale both the data and the computed solution to achieve a more accurate
estimation. If the data is below the desired tolerance of the optimizaton
routine used, the matlab based routine nelder in our case, the converged
estimated value will be the initial guess. Therefore, in this case, we want to
minimize the least squares criterion

n m
J() =D [10° AN (2, y5,1) — 108 (s, jj, 1) (21)
i=1j=1
over the set of all possible length values where (z;,v;),i = 1,..,n;j =

1,...,m are points in the set ¥. The set ¥, in our trial runs, varies from
a set of points uniformly discretizing all of €2 to simply one line of sample
points above the conducting sheet or one line below the sample with a grid
spacing of 0.5mm in both the = and y direction. If we assume we have
access to the values of A in all of 2, in other words values in the conducting
sheet and the sample as well the air above the conducting sheet, below the
sample, and in between the sample and conducting sheet, the set ¥ is thus
given by

U = {(zi,y;) € Qz; = (0.5¢)mm,i =0,...,100; y; = (0.5j—35)mm, j =0, ..., 140}.

If instead we assume we only have access to values on a line 1mm above the
conducting sheet, the set W is given by

U = {(zi,y) € Qz; = (0.5¢)mm,i =0,...,100;y = 2mm}

12



(the top of the conducting sheet is at y = 1mm). We can describe ¥ similarly
for other choices of data sets.

In most experimental settings, we do not have access to measurements of
the magnetic vector potential A, but instead to those of the magnetic field
B. In this case, we compute AV () for a given [ in the manner described in
Section 2.1. To find the computed magnetic field BV (I), we simply use the
definition

BN (l) =V x AN(I).

In general, it is not necessary to use the entire B field, but instead we can
use only one component of the B field, either the z component, By, or the
y component, By. If we are using the x component of B, our least squares
criterion would be

n m
J() =33 10*BY (zi,y;,1) — 108By (i, 5;, 1°)|; (22)
i=1j=1

whereas, if we use the y component of the B field, the criterion would be

n m

J(1) =33 110° By (wi, yj, 1) — 108 By(wi, jj, 1) (23)
i=1j=1

where (z;,y;) € ¥. We minimize the three criteria, (21), (22), and (23),
along various sets ¥ and determine which criterion allows us to most accu-
rately determine the unknown parameter [ while allowing for the limitations
of the given set W. Similarly, we can estimate other unknown parameters in
a similar manner where we replace [ by q in the above equations where q
represents the entire set of unknown parameters.

2.2.2 Noise Generator

In the samples provided, simulated data was used to represent experimental
data A, Bl, or BQ, depending upon the specific trial run. To obtain the
simulated data, we specified the parameters q* for a crack and generated the
solution based upon these exact parameters using the commercial software
Ansoft Maxwell 2D Field Simulator. Again, the goal is to recapture these
parameters by minimizing one of the cost functions given above. However,
when using actual experimental data, we sometimes have random error in
the measurements taken. To simulate this random error, we add random
noise to the simulated data to test our methodology in the presence of noise.

To generate the noise, we use the Matlab function randn which generates
a normally distributed set of random numbers with mean 0 and variance

13



1. A normally distributed set of random numbers has a 65% certainty of
being within 1 standard deviation, 95% certainty of being within 2 standard
deviations and 99.7% certainty of being within 3 standard deviations of the
mean. In other words, there is a 65% chance the Matlab function randn
will return a number in the interval (—1,1), 95% chance of returning a
number in the interval (—2,2) and a 99.7% chance of producing a number
in the interval (—3,3). Therefore, we can control the amount of noise in the
simulated data by scaling the certainty intervals.

For example, assume we have generated the solution A(q*) given exact
parameters q*. Furthermore, we assume we desire to be 95% certain that the
noise generated is within 1% of the actual data A(q*). For 95% certainty of
1% noise, we want to scale the interval (—2,2) to be (—0.01,0.01). Therefore,
letting

€1 = 0.005 * randn,

the data with 95% certainty of having 1% relative noise, A, is given by
A(q") = A(@") (1 + ).

Similarly, if we instead want to be 99.7% certain of noise within 1% of the
simulated data, we scale the interval (—3,3) to the interval (—0.01,0.01) or
let

€9 = 0.0033 * randn.

Again, the data with 99.7% certainty of having 1% relative noise, A, is given
by
A(q*) = A(q")(1 + e2).

In the trials we performed, we simulated corrupted experimental data by
generating noise at a 1% relative noise level with both 95% certainty and
99.7% certainty as discussed above as well as noise at a 5% and 10% relative
noise level with both 95% certainty and 99.7% certainty.

2.3 Results with Test Examples

In determining the geometry of the crack in our simulations, we focus first on
determining the length of the damage and then separately the thickness of
the damage. Various trials are performed in each case for which the specific
values can be found in the Appendices. A summary of the results will be
given in this section.
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2.3.1 Determining the Length of the Damage

The first step in determining the length of the damage is to generate an
ensemble of damages with various crack lengths {/; };V:S 1 to be used in forming
the POD basis. In generating the damages for the examples reported on
here, we used crack lengths varying from Omm to 4mm in increments of
0.2mm while keeping the thickness of the crack fixed at 2mm (N, = 21).
We then used the commercial software Ansoft Maxwell 2D Field Simulator
to generate the snapshots { A(l;)}5L,. Based upon the calculations discussed
in Section 2.1, 99.99% of the energy of the system was captured with a single
basis element. Table 2 gives the amount of energy captured when using N
basis elements, up to 10 basis elements.

Table 2: Energy Captured with N Basis Elements using Snapshots of A on
Length

=2

Energy Captured
0.99999469355655
0.99999998707290
0.99999999918539
0.99999999978293
0.99999999987493
0.99999999990451
0.99999999992129
0.99999999993439
0.99999999994409
0.99999999995308

OO NSO x| W N

—_
o

To test the inverse methodology, we first try to identify the length of the
damage, [* = 1.3mm, by using the criterion given in equation (21). We ran
the inverse problem using 1,2, 3,4 and 5 reduced POD basis elements with
data containing no noise over the entire discretized region 2. There was no
noticeable difference between using 4 and 5 basis elements; hence we chose
to use 4 POD basis elements in our solution approximation.

Based upon the results (see Appendix A.1), we can conclude that under
the assumption that we have access to the magnetic vector potential A in all
of Q, we did a good job of estimating the crack length even when the data
contained 5% relative noise. In actuality, however, we only have access to
data in the regions of air above the conducting sheet or below the sample.
Therefore, the inverse problem was next carried out using “data” in just
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these regions. The results (Appendices A.2 and A.7) illustrate that we still
do a reasonable job estimating the crack length. Although technically it is
possible to have access to data in the entire region of air, typically data is
only taken on only one or two lines above the conducting sheet or below
the sample. As a result of running the inverse problem on just a few lines
above the conducting sheet or below the sample, the inverse problem did
not seem to be efficient, especially for data containing noise at the 5% level.
The results (Appendices A.3 - A.6, A.8 - A.11) indicate that if there is a
considerable amount of noise (5% noise level in our case), it is not feasible
to accurately estimate the crack length using the magnetic vector potential
A. Even with a small amount of noise in the data, the results are not as
accurate as we would like.

As we have already noted, in experimental situations we do not have
access to the magnetic vector potential. Instead, we only have access to
the magnetic flux density or the magnetic field. As a result, we repeated
the computational tests as reported in Appendix A with the exception of
using the criteria given by expressions (22) and (23). Using B; data or the
criterion (22), the results were no better than when we used the magnetic
vector potential (see Appendix B). On the other hand, when we used Bs
data (Appendix C), criterion (23), the inverse problem produced remark-
ably accurate results; estimated lengths were accurate to an order of 1073.
However, the most notable observation in using By data is the low variation
in results even at the 5% and 10% relative noise level. Based upon these
results, we could quite accurately estimate a given length of a crack even if
the data contained a considerable amount of noise. Therefore, we concluded
that even when scanning along a single line, when using the y component of
the magnetic flux density, we can accurately recapture the length of a crack
within a sample. Scanning along multiple lines or over the whole region only
provided marginal improvements in the estimated length; the improvements
are not sufficiently substantial to warrant the extra time or money required
to obtain the extra data.

The results above were produced by taking snapshots of the magnetic
vector potential. We also took snapshots (with which we formed POD ba-
sis elements) on the y component of the magnetic flux density, Bs, and
performed the analysis again using the criterion (23) (see Appendix D).
Although there was a quite notable difference in the energy captured in
N basis elements, see Table 3, the inverse problem still showed the same
consistency and accuracy as seen previously. One comparison we can make
between using POD elements resulting from snapshots of A versus snapshots
of B in the inverse problem is that when using the snapshots on A, the es-
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timated length was normally an overestimate. Conversely, using the POD
elements resulting from snapshots on By usually yielded an underestimate of
the length. Despite this fact, there seems to be no other apparent difference
in using the snapshots on A to generate the basis elements as opposed to
using the snapshots on By to generate the basis elements, as long as one
uses the criterion (23) in the inverse problem calculations.

Table 3: Energy Captured with N Basis Elements using Snapshots of By on
Length

=2

Energy Captured
0.95752844126957
0.98938760682215
0.99515414870549
0.99680555604825
0.99749219883487
0.99789119249012
0.99822617546932
0.99853187498393
0.99871258779223
0.99888757131260

OO NSO ix| W DN

—
)

2.3.2 Determining the Thickness or Height of the Damage

Proceeding as we did in estimating the length of a damage, we generated
an ensemble of crack thicknesses (heights) ranging from Omm to 4mm in
increments of 2mm, {h;}3L, with associated solutions {A(h;)}5L,. Similar
to taking snapshots on the length of a damage, 99.99% of the energy was
captured in a single basis element, see Table 4.

Based upon the results on characterizing the length of the damage, we
only considered snapshots of the magnetic vector potential and By data in
the inverse problem. However, unlike when estimating the length of the
crack, even though 99% of the energy is captured in a single basis element
even when we snapshot on By, see Table 5, more basis elements (at least 8)
were required in the inverse problem to estimate the thickness of the crack
with an accuracy of order 1072 when no noise was added using just one
line above the conducting sheet. Therefore, we used 9 POD basis elements.
Although more basis elements were used, the total time required to recapture
the thickness of the crack was still only 8 seconds. Furthermore, the results

17



Table 4: Energy Captured with N Basis Elements using Snapshots of A on
Thickness

=

Energy Captured
0.99999446453503
0.99999999666469
0.9999999993584
0.99999999961479
0.99999999972048
0.99999999980054
0.99999999984470
0.99999999987779
0.99999999990521
0.99999999992316

OO NSO ix|W N =

—
o

(see Appendix E) when using 9 POD basis elements were still accurate even
in the presence of 10% noise. Thus, similar to estimating the length of a
crack, we can also recapture the thickness of a crack quite accurately and
efficiently.

Table 5: Energy Captured with N Basis Elements using Snapshots of By on
Thickness

2

Energy Captured
0.99488023435913
0.99728234129540
0.99799825670140
0.99836722535293
0.99870058186819
0.99896958827131
0.99911070207772
0.99923141472559
0.99934263323537
0.99944776176825

OO0 NSO ix| W DN~

—
)
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3 Conclusion

In this paper, we began by developing a two-dimensional test problem to
be used in locating and characterizing the geometry of a hidden damage
within a sample of material. This two-dimensional problem was argued to
be a reasonable approximation to a typical three-dimensional problem under
certain assumptions. We then formulated the forward problem describing
the behavior of the magnetic vector potential in this test problem and dis-
cussed computational methods to be used in solving the forward problem.
In order to quickly and efficiently obtain results in the inverse problem, the
computational methods for the forward problem must be fast and accurate.
Therefore, we chose to use the reduced order POD technique in the forward
problem, allowing us to use less than 10 basis elements in each of the exam-
ples tested to date. Consequently, we were able to provide a fast forward
algorithm. Moreover, the POD basis elements were formed so that we cap-
tured at least 99% of the energy in these few basis elements, making the
foward algorithm accurate as well as fast.

We then explained the implementation of the inverse problem and re-
sults. While the methods did not seem to be robust when using A data
or B; data in the inverse algorithm, the methods were robust, even in the
presence of 10% relative noise, when using B, data regardless of whether
we snapshot on the magnetic vector potential or the magnetic flux density.
Furthermore, performing multi-line scans or using full region data improve
results only marginally over a single line scan and hence do not warrant the
extra effort and time in collecting more extensive data sets. Moreover, if
one were to use a software package such as Ansoft’s Maxwell 2D Field Sim-
ulator to calculate the forward problem each time required in the inverse
problem, it would take approximately 5-10 minutes for a single forward run
and hence any inverse algorithm based on this forward solver would require
hours of time for the optimization problem. In using the reduced order POD
methodology for the forward problem, the entire inverse problem takes ap-
proximately 8 seconds, less than % the time required for a single forward
run using Ansoft. As a forward algorithm is called numerous times, this is
a substantial reduction in time required. Therefore, using data collected on
a single line above the conducting sheet or below the sample, we are able to
estimate the length or thickness of a damage in a small amount of time.

The results summarized in this note suggest that use of the POD based
approximation methods in electromagnetic eddy current technique inverse
problems for damage is a viable approach. We are therefore continuing our
efforts with damages requiring more than one-dimensional parameterization.
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We are also exploring use of these techniques in geometries requiring 3D
formulations.
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Appendices

A Results Varying the Length using A for the POD
elements and A in the Inverse Problem

A1l All of Q

A.1.1 No noise: 1.2999

A.1.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.3164 1 1.3023

2 1.3140 2 1.3140

3 1.3091 3 1.2943

4 1.3160 4 1.3021

5 1.30007 5 1.2898

6 1.3026 6 1.2932

7 1.3127 7 1.3112

8 1.2829 8 1.2979

9 1.2876 9 1.2916
10 1.3044 10 1.3041

Mean Median Mean Median
1.3046 1.3067 1.3000 1.3000
St. Dev. Var St. Dev. Var.

0.0117 | 0.1360 =102 0.0082 | 0.6716 %1074

A.1.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. [ Trial Est [
1 1.3474 1 1.2931

2 1.3104 2 1.3428

3 1.2729 3 1.2612

4 1.2656 4 1.3333

5 1.3369 5 1.2515

6 1.2769 6 1.3818

7 1.1103 7 1.3596

8 1.2874 8 1.2767

9 1.2635 9 1.3481
10 1.3159 10 1.3114

Mean Median Mean Median
1.2787 1.2821 1.3160 1.3224
St. Dev. Var St. Dev. Var.
0.0661 0.0044 0.0441 0.0019
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A.2 Air above Conducting Sheet
A.2.1 No noise: 1.2997
A.2.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.3425 1 1.2129

2 1.3177 2 1.3241

3 1.2542 3 1.3352

4 1.2837 4 1.3020

5 1.3171 5 1.2832

6 1.2633 6 1.3098

7 1.2488 7 1.2744

8 1.3755 8 1.2953

9 1.2717 9 1.2661
10 1.3580 10 1.2775

Mean Median Mean Median
1.3033 1.3004 1.2880 1.2892
St. Dev. Var St. Dev. Var.
0.0454 0.0021 0.0345 0.0012

A.2.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.5417 1 1.3383

2 1.7327 2 1.2235

3 1.4729 3 1.2000

4 1.3760 4 1.2227

5 1.6875 5 1.1396

6 1.5942 6 1.1630

7 0.7461 7 1.2158

8 1.3169 8 1.2349

9 1.0796 9 1.2936
10 1.2246 10 1.4727

Mean Median Mean Median
1.3772 1.4244 1.2504 1.2231
St. Dev. Var St. Dev. Var.
0.3018 0.0911 0.0968 0.0094
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A.3 1 line 1mm above Conducting Sheet
A.3.1 No noise: 1.3008
A.3.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.5117 1 1.2520

2 1.4375 2 1.0215

3 0.9785 3 1.3027

4 1.1621 4 1.0781

5 1.1592 5 1.4512

6 1.0400 6 1.4365

7 0.6377 7 1.4219

8 1.5977 8 1.4072

9 1.4189 9 1.0796
10 0.7861 10 1.3535

Mean Median Mean Median
1.1729 1.1606 1.2804 1.3281
St. Dev. Var St. Dev. Var.
0.3193 0.1019 0.1648 0.0272

A.3.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.8438 1 0.8706

2 2.5371 2 3.1279

3 2.2451 3 0.8486

4 2.2910 4 2.4487

5 0.1699 5 0.9888

6 0.0820 6 0.2402

7 0.2148 7 1.8872

8 0.8770 8 1.0327

9 0.0000 9 1.5786
10 3.8301 10 0.8496

Mean Median Mean Median
1.4091 1.3604 1.3873 1.0107
St. Dev. Var St. Dev. Var.
1.3246 1.7545 0.8749 0.7655
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A.4 2 lines Imm & 1.5mm above Conducting Sheet
A.4.1 No noise: 1.3008
A.4.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.2979 1 1.4248

2 1.0068 2 1.5068

3 1.1875 3 1.5845

4 1.5322 4 1.2759

5 1.5078 5 1.3535

6 1.2227 6 1.0981

7 1.5635 7 1.4292

8 1.1572 8 1.5376

9 1.1221 9 1.4912
10 1.0190 10 1.3921

Mean Median Mean Median
1.2617 1.2051 1.4094 1.4270
St. Dev. Var St. Dev. Var.
0.2075 0.0430 0.1422 0.0202

A.4.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 0.0000 1 0.1797

2 2.1362 2 0.3955

3 2.4600 3 1.7627

4 1.0371 4 1.0664

5 0.1758 5 3.0376

6 0.1680 6 0.8433

7 2.0000 7 1.4243

8 2.0488 8 2.2070

9 1.8364 9 1.5337
10 0.0000 10 0.3496

Mean Median Mean Median
1.1862 1.4368 1.2800 1.2454
St. Dev. Var St. Dev. Var.
1.0137 1.0276 0.9044 0.8180
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A.5 2 lines 1mm & 2mm above Conducting Sheet
A.5.1 No noise: 1.3008
A.5.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.6216 1 1.3755

2 1.2178 2 1.3252

3 1.2305 3 1.2856

4 1.3145 4 1.1709

5 1.3877 5 1.2666

6 1.1328 6 1.4526

7 1.2178 7 1.2051

8 0.9541 8 1.3071

9 1.5146 9 1.1025
10 1.2446 10 1.3955

Mean Median Mean Median
1.2836 1.2375 1.2887 1.2964
St. Dev. Var St. Dev. Var.
0.1897 0.0360 0.1072 0.0115

A.5.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 0.2710 1 1.7476

2 0.0000 2 1.4482

3 2.3340 3 0.5010

4 0.8428 4 1.4795

5 1.3818 5 0.9219

6 0.7466 6 1.8154

7 1.4355 7 0.1602

8 1.3960 8 0.3975

9 1.0332 9 0.1470
10 2.2305 10 2.0205

Mean Median Mean Median
1.1671 1.2075 1.0639 1.1851
St. Dev. Var St. Dev. Var.
0.7548 0.5698 0.7231 0.5229
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A.6 3 lines 1mm, 1.5mm & 2mm above Conducting Sheet
A.6.1 No noise: 1.3008
A.6.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.2148 1 1.3882

2 1.1426 2 1.2534

3 1.2510 3 1.3403

4 1.4546 4 1.3447

5 1.5117 5 1.2095

6 1.2319 6 1.3442

7 1.1025 7 1.2661

8 1.4028 8 1.5513

9 1.4668 9 1.3965
10 1.3750 10 1.4624

Mean Median Mean Median
1.3154 1.3130 1.3557 1.3445
St. Dev. Var St. Dev. Var.
0.1447 0.0209 0.1015 0.0103

A.6.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.9707 1 1.3916

2 0.9438 2 1.7456

3 3.2266 3 2.2070

4 1.1763 4 1.8628

5 2.2183 5 1.1856

6 0.0000 6 1.1016

7 1.7520 7 1.7388

8 1.8276 8 2.6826

9 1.5508 9 1.2510
10 0.0000 10 1.3896

Mean Median Mean Median
1.4666 1.6514 1.6557 1.5652
St. Dev. Var St. Dev. Var.
0.9885 0.9772 0.4998 0.2498
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A.7 Air below Sample
A.7.1 No noise: 1.2988
A.7.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2954 1 1.2881

2 1.2969 2 1.3003

3 1.2729 3 1.2881

4 1.2932 4 1.2998

5 1.3010 5 1.3027

6 1.2710 6 1.3199

7 1.2842 7 1.3228

8 1.2998 8 1.3142

9 1.3225 9 1.3105
10 1.3188 10 1.2783

Mean Median Mean Median
1.2956 1.2961 1.3025 1.3015
St. Dev. Var St. Dev. Var.

0.0169 | 0.2853 %1073 0.0146 | 0.2138 %1072

A.7.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.0972 1 1.3926

2 1.4709 2 1.2100

3 1.3215 3 1.1553

4 1.1084 4 1.3296

5 1.4141 5 1.3301

6 1.1543 6 1.3179

7 1.2007 7 1.3762

8 1.3455 8 1.2281

9 1.3677 9 1.3574
10 1.3105 10 1.4438

Mean Median Mean Median
1.2791 1.3160 1.3141 1.3298
St. Dev. Var St. Dev. Var.
0.1308 0.0171 0.0899 0.0081
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A.8 1 line 1mm below Sample
A.8.1 No noise: 1.3008
A.8.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.2070 1 1.3398

2 1.2266 2 1.2461

3 1.2803 3 1.3291

4 1.2402 4 1.3164

5 1.1992 5 1.2979

6 1.2930 6 1.2217

7 1.3672 7 1.3770

8 1.3154 8 1.3076

9 1.3242 9 1.2480
10 1.1396 10 1.2939

Mean Median Mean Median
1.2593 1.2603 1.2978 1.3027
St. Dev. Var St. Dev. Var.
0.0689 0.0047 0.0476 0.0023

A.8.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 0.8916 1 1.4160

2 1.2363 2 0.9141

3 1.0332 3 1.4346

4 1.2539 4 1.7129

5 1.3506 5 1.5127

6 1.5488 6 1.2480

7 0.5635 7 1.2979

8 1.3018 8 1.0947

9 2.1152 9 1.5430
10 1.2422 10 1.2773

Mean Median Mean Median
1.2537 1.2480 1.3451 1.3569
St. Dev. Var St. Dev. Var.
0.4079 0.1664 0.2310 0.0539
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A.9 2 lines 1mm & 1.5mm below Sample
A.9.1 No noise: 1.3008
A.9.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.2798 1 1.2559

2 1.2812 2 1.3301

3 1.2974 3 1.3545

4 1.3247 4 1.2695

5 1.3945 5 1.2802

6 1.2109 6 1.3203

7 1.3301 7 1.3145

8 1.2725 8 1.3125

9 1.3242 9 1.3374
10 1.2500 10 1.2197

Mean Median Mean Median
1.2965 1.2893 1.2995 1.3135
St. Dev. Var St. Dev. Var.
0.0504 0.0025 0.0418 0.0017

A.9.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.3135 1 1.0977

2 1.4316 2 1.2305

3 1.3662 3 1.3076

4 0.8086 4 1.4883

5 1.4004 5 1.4893

6 1.7168 6 1.6211

7 0.9863 7 1.3965

8 1.3965 8 1.0483

9 1.4004 9 1.1406
10 1.2900 10 1.4414

Mean Median Mean Median
1.3110 1.3813 1.3261 1.3521
St. Dev. Var St. Dev. Var.
0.2503 0.0626 0.1919 0.0368

32



A.10 2 lines Imm & 2mm below Sample
A.10.1 No noise: 1.3008
A.10.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.3232 1 1.8330
2 1.2451 2 1.3125
3 1.2539 3 1.2563
4 1.3975 4 1.3213
5 1.3135 5 1.3047
6 1.4102 6 1.3330
7 1.3740 7 1.2769
8 1.2461 8 1.3130
9 1.2402 9 1.2920
10 1.2808 10 1.3320
Mean Median Mean Median
1.3084 1.2971 1.3075 1.3127
St. Dev. Var St. Dev. Var.
0.0659 0.0043 0.0257 0.6614 + 1073

A.10.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.3506 1 1.1978

2 0.8071 2 1.0562

3 7.1978 3 1.4238

4 1.4679 4 0.9912

5 1.1035 5 1.4028

6 0.8970 6 1.4590

7 1.0308 7 1.3076

8 1.6934 8 1.4336

9 1.7075 9 1.3379
10 1.5605 10 1.2329

Mean Median Mean Median
1.2809 1.2742 1.2843 1.3228
St. Dev. Var St. Dev. Var.
0.3232 0.1045 0.1626 0.0264
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A.11 3 lines 1mm, 1.5mm & 2mm below Sample
A.11.1 No noise: 1.3008
A.11.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.2832 1 1.2803
2 1.3125 2 1.3291
3 1.2827 3 1.3267
4 1.3672 4 1.2891
5 1.2227 5 1.2964
6 1.3311 6 1.3091
7 1.3047 7 1.3027
8 1.2695 8 1.2798
9 1.2651 9 1.3003
10 1.3525 10 1.2891
Mean Median Mean Median
1.2991 1.2939 1.3002 1.2983
St. Dev. Var St. Dev. Var.
0.0436 0.0019 0.0173 0.2997 + 1073

A.11.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.6182 1 1.2275

2 1.2520 2 1.5249

3 1.5283 3 1.3501

4 1.0972 4 1.4717

5 1.3384 5 1.3569

6 1.3560 6 1.3066

7 1.3799 7 1.4043

8 1.2817 8 1.3789

9 1.2441 9 1.0752
10 1.4599 10 1.3789

Mean Median Mean Median
1.3555 1.3472 1.3475 1.3679
St. Dev. Var St. Dev. Var.
0.1512 0.0229 0.1258 0.0158
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B Results Varying the Length using A for the POD
elements and B; in the Inverse Problem

B.1 1 line 1mm above Conducting Sheet
B.1.1 No noise: 1.2985
B.1.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2614 1 1.3666

2 1.4045 2 1.4433

3 1.1287 3 1.1973

4 1.3927 4 1.2750

5 1.8064 5 1.1771

6 1.1749 6 1.3930

7 1.0553 7 1.1605

8 1.2867 8 1.3307

9 1.4106 9 1.2473
10 1.0461 10 1.3660

Mean Median Mean Median
1.2967 1.2741 1.2957 1.3028
St. Dev. Var St. Dev. Var.
0.2258 0.0510 0.0985 0.0097

B.1.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. [ Trial Est [
1 0.6299 1 2.6106

2 1.6125 2 0.6149

3 0.6973 3 1.4914

4 0.5758 4 0.7580

5 0.1846 5 0.8566

6 2.4677 6 0.4537

7 0.0000 7 1.4921

8 0.5228 8 1.8085

9 0.4496 9 0.5834
10 0.0000 10 1.5533

Mean Median Mean Median
0.7140 0.5493 1.2223 1.1743
St. Dev. Var St. Dev. Var.
0.7685 0.5906 0.6866 0.4715
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C Results Varying the Length using A for the POD
elements and Bs in the Inverse Problem

C.l1 Allof Q
C.1.1 No noise: 1.3023
C.1.2 1% noise
1% noise (95%) 1% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.3029 1 1.3028
2 1.3025 2 1.3024
3 1.3021 3 1.3027
4 1.3014 4 1.3024
5 1.3024 5 1.3021
6 1.3028 6 1.3021
7 1.3032 7 1.3024
8 1.3028 8 1.3026
9 1.3024 9 1.3023
10 1.3028 10 1.3022
Mean Median Mean Median
1.3025 1.3026 1.3024 1.3024
St. Dev. Var St. Dev. Var.
0.5057 1072 | 0.2558 * 10~ 0.2355 %1072 | 0.5544 %« 107
C.1.3 5% noise
5% noise (95%) 5% noise (99.7%)
Trial Est. | Trial Est [
1 1.3053 1 1.3021
2 1.3019 2 1.3015
3 1.3023 3 1.3021
4 1.3017 4 1.3031
5 1.2986 5 1.3035
6 1.3047 6 1.3014
7 1.3018 7 1.2978
8 1.3008 8 1.3037
9 1.3044 9 1.3047
10 1.3012 10 1.3030
Mean Median Mean Median
1.3023 1.3018 1.3023 1.3025
St. Dev. Var St. Dev. Var.
0.0020 | 0.4472%107° 0.0019 | 0.3575 % 107°
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C.2 Air above Conducting Sheet

C.2.1 No noise: 1.2999

C.2.2 1% noise
1% noise (95%) 1% noise (99.7%)
Trial Est. | Trial Est [
1 1.3000 1 1.2998
2 1.2999 2 1.2999
3 1.2999 3 1.29998
4 1.3000 4 1.3000
5 1.2998 5 1.2998
6 1.2998 6 1.3000
7 1.3000 7 1.3000
8 1.3000 8 1.2999
9 1.2999 9 1.2997
10 1.2995 10 1.2999
Mean Median Mean Median
1.2999 1.2999 1.2999 1.2999
St. Dev. Var St. Dev. Var.
0.1629 1073 | 0.2653 * 10~7 0.9256 * 10~* | 0.8567 * 1078
C.2.3 5% noise
5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2981 1 1.2998
2 1.3000 2 1.3002
3 1.3008 3 1.2993
4 1.2996 4 1.3003
5 1.2978 5 1.2995
6 1.2995 6 1.2995
7 1.3009 7 1.2995
8 1.2082 8 1.2995
9 1.2998 9 1.3006
10 1.2978 10 1.3006
Mean Median Mean Median
1.2992 1.2996 1.2999 1.2997
St. Dev. Var St. Dev. Var.
0.0012 | 0.1426 * 10~° 0.5727 %1072 | 0.3230 x 10~°
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C.3 1 line 1mm above Conducting Sheet

C.3.1 No noise: 1.3011

C.3.2 1% noise
1% noise (95%) 1% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.3009 1 1.3013
2 1.3013 2 1.3005
3 1.2989 3 1.3014
4 1.3015 4 1.3011
5 1.3022 5 1.3000
6 1.2993 6 1.3004
7 1.3014 7 1.3007
8 1.3007 8 1.3012
9 1.2998 9 1.3012
10 1.3018 10 1.3007
Mean Median Mean Median
1.3008 1.3011 1.3008 1.3009
St. Dev. Var St. Dev. Var.
0.0011 | 0.1180 *107° 0.4652 * 1073 | 0.2165 % 107

C.3.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.3024 1 1.3062

2 1.3021 2 1.3013

3 1.3068 3 1.3053

4 1.3000 4 1.3050

5 1.3001 5 1.2982

6 1.2969 6 1.2981

7 1.2985 7 1.3007

8 1.2992 8 1.2988

9 1.3032 9 1.3015
10 1.2926 10 1.2989

Mean Median Mean Median
1.3002 1.3000 1.3014 1.3010
St. Dev. Var St. Dev. Var.

0.0039 | 0.1494 «10~* 0.0031 | 0.9653 « 10~°
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10% noise

10% noise (95%) 10% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2981 1 1.2976
2 1.3090 2 1.3001
3 1.3072 3 1.3052
4 1.2983 4 1.3007
5 1.3092 5 1.2919
6 1.3023 6 1.3032
7 1.2944 7 1.2992
8 1.3065 8 1.2869
9 1.3090 9 1.3002
10 1.2962 10 1.2920
Mean Median Mean Median
1.3030 1.3044 1.2977 1.2977
St. Dev. Var St. Dev. Var.
0.0058 | 0.3417 «10~* 0.0057 | 0.3237 %107
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C.4 2 lines 1mm & 1.5mm above Conducting Sheet

C.4.1 No noise: 1.3010

C.4.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. [ Trial Est [

1 1.3013 1 1.3011

2 1.3008 2 1.3010

3 1.3014 3 1.3017

4 1.3002 4 1.3006

5 1.3009 5 1.3012

6 1.3018 6 1.3005

7 1.3009 7 1.3009

8 1.3009 8 1.3009

9 1.3021 9 1.3006

10 1.3006 10 1.3017
Mean Median Mean Median
1.3011 1.3009 1.3010 1.3009

St. Dev. Var St. Dev. Var.

0.5835 % 1072 | 0.3403 %« 1076 0.4109 % 10~ | 0.1688 « 1076

C.4.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.3022 1 1.3031

2 1.3009 2 1.3016

3 1.3001 3 1.3027

4 1.2996 4 1.3024

5 1.2996 5 1.3024

6 1.3023 6 1.3004

7 1.3015 7 1.2995

8 1.3025 8 1.3003

9 1.3051 9 1.2959
10 1.3025 10 1.3002

Mean Median Mean Median
1.3013 1.3019 1.3008 1.3010
St. Dev. Var St. Dev. Var.

0.0023 | 0.5150 % 10~° 0.0021 | 0.4613 % 10~°
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C.5 3 lines 1mm, 1.5mm & 2mm above Conducting Sheet

C.5.1 No noise: 1.3010

C.5.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. [ Trial Est [

1 1.3017 1 1.3009

2 1.3015 2 1.3017

3 1.3011 3 1.3011

4 1.3012 4 1.3012

5 1.3005 5 1.3015

6 1.3015 6 1.3012

7 1.3005 7 1.3008

8 1.3013 8 1.3011

9 1.3010 9 1.3012

10 1.3015 10 1.3014
Mean Median Mean Median
1.3012 1.3013 1.3012 1.3012

St. Dev. Var St. Dev. Var.

0.4225 1072 | 0.1788 x 10~° 0.2669 * 10™2 | 0.7123 « 107

C.5.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.3034 1 1.3036

2 1.2988 2 1.3005

3 1.3043 3 1.2989

4 1.2983 4 1.2994

5 1.3035 5 1.3013

6 1.3042 6 1.3040

7 1.2961 7 1.2954

8 1.2994 8 1.2989

9 1.3059 9 1.2979
10 1.3030 10 1.3022

Mean Median Mean Median
1.3017 1.3032 1.3002 1.2999
St. Dev. Var St. Dev. Var.

0.0033 0.1059 * 10~* 0.0027 0.7077 %+ 10~°
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C.6 Air below Sample
C.6.1 No noise: 1.3012
C.6.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. [ Trial Est [
1 1.3010 1 1.3013
2 1.3012 2 1.3011
3 1.3012 3 1.3009
4 1.3010 4 1.3010
5 1.3013 5 1.3011
6 1.3010 6 1.3014
7 1.3015 7 1.3013
8 1.3014 8 1.3013
9 1.3009 9 1.3011
10 1.3009 10 1.3014
Mean Median Mean Median
1.3012 1.3011 1.3012 1.3012
St. Dev. Var St. Dev. Var.
0.2175 %1072 | 0.4730 « 10~7 0.1596 * 1072 | 0.2548 « 10"

C.6.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.3024 1 1.3024
2 1.3017 2 1.3015
3 1.2999 3 1.3020
4 1.2990 4 1.3006
5 1.3016 5 1.3003
6 1.3011 6 1.3020
7 1.2995 7 1.3021
8 1.3026 8 1.3002
9 1.2990 9 1.3012
10 1.3012 10 1.3016
Mean Median Mean Median
1.3007 1.3006 1.3014 1.3015
St. Dev. Var St. Dev. Var.
0.0014 | 0.1848 % 10°° 0.7194 1072 | 0.5176 x 10~°
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C.7 1 line 1mm below Sample

C.7.1 No noise: 1.3014

C.7.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. | Trial Est [

1 1.3007 1 1.3011

2 1.3025 2 1.3018

3 1.3032 3 1.3019

4 1.3003 4 1.3018

5 1.3003 5 1.3028

6 1.3014 6 1.3004

7 1.3019 7 1.3013

8 1.3016 8 1.3012

9 1.3024 9 1.3019

10 1.3025 10 1.3010
Mean Median Mean Median
1.3017 1.3017 1.3015 1.3015

St. Dev. Var St. Dev. Var.

0.9441 %1073 | 0.8914 % 1076 0.6565 * 1073 | 0.4309 % 107

C.7.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.2972 1 1.3060

2 1.2992 2 1.3016

3 1.3047 3 1.3006

4 1.3052 4 1.2943

5 1.3040 5 1.3024

6 1.3045 6 1.3020

7 1.3056 7 1.2941

8 1.3021 8 1.2996

9 1.3026 9 1.3021
10 1.2927 10 1.3006

Mean Median Mean Median
1.3018 1.3033 1.3003 1.3011
St. Dev. Var St. Dev. Var.

0.0042 | 0.1763 « 10~* 0.0036 | 0.1324 %107
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10% noise

10% noise (95%) 10% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.3148 1 1.3015
2 1.3017 2 1.3000
3 1.2986 3 1.3043
4 1.2796 4 1.3115
5 1.3039 5 1.3012
6 1.3029 6 1.3136
7 1.2792 7 1.3117
8 1.2955 8 1.2911
9 1.3033 9 1.2997
10 1.2986 10 1.3041
Mean Median Mean Median
1.2978 1.3001 1.3039 1.3028
St. Dev. Var St. Dev. Var.
0.0110 | 0.1203 « 1073 0.0068 | 0.4681 % 10*
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C.8 2 lines Imm & 1.5mm below Sample

C.8.1 No noise: 1.3015

C.8.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. [ Trial Est [

1 1.3011 1 1.3013

2 1.3015 2 1.3016

3 1.3011 3 1.3011

4 1.3028 4 1.3017

5 1.3022 5 1.3010

6 1.3029 6 1.3023

7 1.3020 7 1.3022

8 1.3003 8 1.3015

9 1.3010 9 1.3011

10 1.3017 10 1.3020
Mean Median Mean Median
1.3017 1.3016 1.3016 1.3016

St. Dev. Var St. Dev. Var.

0.8305 % 1072 | 0.6898 % 1076 0.4699 * 10~ | 0.2208 « 1076

C.8.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.3030 1 1.3036

2 1.3000 2 1.2994

3 1.3081 3 1.3036

4 1.3018 4 1.2961

5 1.2995 5 1.3026

6 1.3011 6 1.3029

7 1.3029 7 1.3025

8 1.3034 8 1.3025

9 1.3005 9 1.3013
10 1.3076 10 1.3026

Mean Median Mean Median
1.3028 1.3023 1.3017 1.3025
St. Dev. Var St. Dev. Var.

0.0030 0.8803 * 10~° 0.0023 0.5309 * 10~°
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C.9 3 lines 1lmm, 1.5mm & 2mm below Sample

C.9.1 No noise: 1.3010

C.9.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. | Trial Est [

1 1.3010 1 1.3011

2 1.3020 2 1.3010

3 1.3012 3 1.3010

4 1.3014 4 1.3020

5 1.3014 5 1.3013

6 1.3009 6 1.3018

7 1.3018 7 1.3014

8 1.3013 8 1.3008

9 1.2998 9 1.3005

10 1.3013 10 1.3013
Mean Median Mean Median
1.3012 1.3013 1.3012 1.3012

St. Dev. Var St. Dev. Var.

0.6024 + 1073 | 0.3628 * 107 0.4514 %1073 | 0.2038 + 107

C.9.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.3000 1 1.3008

2 1.2986 2 1.2998

3 1.2940 3 1.3005

4 1.3042 4 1.3025

5 1.3047 5 1.2995

6 1.3018 6 1.2961

7 1.2993 7 1.2993

8 1.3045 8 1.3035

9 1.3036 9 1.3025
10 1.3055 10 1.3035

Mean Median Mean Median
1.3016 1.3027 1.3003 1.3007
St. Dev. Var St. Dev. Var.

0.0037 | 0.1345 %= 10~* 0.0023 | 0.5295 % 1075
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D Results Varying the Length using By for the
POD elements and B2 in the Inverse Problem

D.1 1 line 1mm above Conducting Sheet
D.1.1 No noise: 1.2978

D.1.2 1% noise
1% noise (95%) 1% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2974 1 1.2955
2 1.2974 2 1.2977
3 1.3001 3 1.2974
4 1.2981 4 1.2981
5 1.2976 5 1.2981
6 1.2975 6 1.2979
7 1.2970 7 1.2974
8 1.2977 8 1.2977
9 1.2980 9 1.2982
10 1.2993 10 1.2977
Mean Median Mean Median
1.2980 1.2977 1.2976 1.2977
St. Dev. Var St. Dev. Var.
0.9590 1072 | 0.9197 x10~° 0.7898 * 1072 | 0.6237 x10~°
D.1.3 5% noise
5% noise (95%) 5% noise (99.7%)
Trial Est. [ Trial Est |
1 1.2909 1 1.3028
2 1.2993 2 1.3013
3 1.2964 3 1.2970
4 1.2872 4 1.2965
5 1.2971 5 1.2996
6 1.2910 6 1.3018
7 1.2940 7 1.3060
8 1.2940 8 1.2996
9 1.2969 9 1.2958
10 1.3056 10 1.2984
Mean Median Mean Median
1.2952 1.2952 1.2999 1.2999
St. Dev. Var St. Dev. Var.
0.0051 | 0.2631 %1074 0.0032 | 0.1017 %104
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D.2 2 lines 1mm & 1.5mm above Conducting Sheet

D.2.1 No noise: 1.2978

D.2.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. [ Trial Est [

1 1.2981 1 1.2980
2 1.2977 2 1.2977

3 1.2976 3 1.2976

4 1.2990 4 1.2980

5 1.2978 5 1.2978

6 1.2992 6 1.2969

7 1.2984 7 1.2975

8 1.2980 8 1.2982

9 1.2987 9 1.2981

10 1.2964 10 1.2974
Mean Median Mean Median
1.2981 1.2980 1.2977 1.2977

St. Dev. Var St. Dev. Var.

0.8098 % 1072 | 0.6558 %« 1076 0.3959 % 1072 | 0.1592 %« 1076

D.2.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est 1
1 1.2987 1 1.2988

2 1.2942 2 1.2989

3 1.2985 3 1.3011

4 1.2931 4 1.2981

5 1.2988 5 1.2979

6 1.2988 6 1.2990

7 1.3021 7 1.2997

8 1.2957 8 1.2970

9 1.3026 9 1.2940
10 1.2942 10 1.2969

Mean Median Mean Median
1.2977 1.2986 1.2981 1.2984
St. Dev. Var St. Dev. Var.

0.0033 0.1079 * 10~* 0.0019 0.3638 % 10~°
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D.3 1 line 1mm below Sample

D.3.1 No noise: 1.2974

D.3.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. | Trial Est [

1 1.2970 1 1.2982

2 1.2982 2 1.2978

3 1.2975 3 1.2985

4 1.2981 4 1.2966

5 1.2962 5 1.2987

6 1.2957 6 1.2970

7 1.2973 7 1.2990

8 1.2979 8 1.2975

9 1.2964 9 1.2985

10 1.2981 10 1.2971
Mean Median Mean Median
1.2972 1.2972 1.2979 1.2980

St. Dev. Var St. Dev. Var.

0.9133 %1073 | 0.8340 % 107 0.8261 * 1073 | 0.6824 % 107

D.3.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2971 1 1.2986

2 1.2990 2 1.2992

3 1.2970 3 1.3013

4 1.2998 4 1.3026

5 1.2959 5 1.3000

6 1.3086 6 1.2963

7 1.2968 7 1.2956

8 1.2987 8 1.2959

9 1.2934 9 1.2997
10 1.2985 10 1.2973

Mean Median Mean Median
1.2985 1.2978 1.2986 1.2989
St. Dev. Var St. Dev. Var.

0.0040 | 0.1597 = 10~* 0.0024 | 0.5578 * 10~°
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D.4 2 lines 1mm & 1.5mm below Sample

D.4.1 No noise: 1.2974

D.4.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. [ Trial Est [

1 1.2966 1 1.2979

2 1.2983 2 1.2971

3 1.2972 3 1.2982

4 1.2975 4 1.2979

5 1.2984 5 1.2973

6 1.2975 6 1.2980

7 1.2976 7 1.2970

8 1.2982 8 1.2975

9 1.2980 9 1.2974

10 1.2971 10 1.2977
Mean Median Mean Median
1.2977 1.2976 1.2976 1.2976

St. Dev. Var St. Dev. Var.

0.5815 %1072 | 0.3382 %« 1076 0.3915 %1072 | 0.1533 %« 1076

D.4.3 5% noise

5% noise (95%) 5% noise (99.7%)
Trial Est. 1 Trial Est [
1 1.2926 1 1.2978

2 1.3006 2 1.2995

3 1.3035 3 1.2947

4 1.2924 4 1.2990

5 1.2969 5 1.3002

6 1.2966 6 1.2978

7 1.2950 7 1.2990

8 1.2980 8 1.2961

9 1.2989 9 1.3006
10 1.3004 10 1.3001

Mean Median Mean Median
1.2975 1.2975 1.2985 1.2990
St. Dev. Var St. Dev. Var.

0.0035 | 0.1254 %« 10~* 0.0019 | 0.3592 %105
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E Results Varying the Thickness using A for the
POD elements and B; in the Inverse Problem

E.1 1 line 1mm above Conducting Sheet
E.1.1 No noise: 1.3036

E.1.2 1% noise
1% noise (95%) 1% noise (99.7%)
Trial Est. h Trial Est h
1 1.3052 1 1.3035
2 1.3045 2 1.3039
3 1.3042 3 1.3038
4 1.3027 4 1.3037
5 1.3033 5 1.3034
6 1.3036 6 1.3043
7 1.3025 7 1.3041
8 1.3030 8 1.3031
9 1.3045 9 1.3033
10 1.3050 10 1.3047
Mean Median Mean Median
1.3037 1.3035 1.3038 1.3037
St. Dev. Var St. Dev. Var.
0.8351 %1072 | 0.6974 * 10~° 0.4875 %1073 | 0.2377 «107°
E.1.3 5% noise
5% noise (95%) 5% noise (99.7%)
Trial Est. h Trial Est h
1 1.3032 1 1.3070
2 1.3053 2 1.3072
3 1.3022 3 1.3022
4 1.3011 4 1.3063
5 1.2987 5 1.3056
6 1.3030 6 1.3006
7 1.3013 7 1.3026
8 1.3054 8 1.3035
9 1.3102 9 1.2999
10 1.3045 10 1.3015
Mean Median Mean Median
1.3035 1.3031 1.3036 1.3031
St. Dev. Var St. Dev. Var.
0.0031 0.9847 % 1075 0.0027 0.7377 % 1075
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10% noise

10% noise (95%) 10% noise (99.7%)
Trial Est. h Trial Est h
1 1.2098 1 1.3058
2 1.2928 2 1.3069
3 1.3087 3 1.3124
4 1.2952 4 1.2952
5 1.3008 5 1.3072
6 1.3144 6 1.3054
7 1.3080 7 1.2997
8 1.3047 8 1.3024
9 1.3166 9 1.2973
10 1.3050 10 1.3087
Mean Median Mean Median
1.3037 1.3049 1.3041 1.3056
St. Dev. Var St. Dev. Var.
0.0088 0.7716 * 10~* 0.0054 0.2883 % 1074
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E.2 2 lines Imm & 1.5mm above Conducting Sheet
E.2.1 No noise: 1.3046
E.2.2 1% noise

1% noise (95%) 1% noise (99.7%)
Trial Est. h Trial Est h
1 1.3043 1 1.3040
2 1.3049 2 1.3043
3 1.3046 3 1.3051
4 1.3056 4 1.3046
5 1.3020 5 1.3039
6 1.3043 6 1.3051
7 1.3035 7 1.3042
8 1.3054 8 1.3042
9 1.3039 9 1.3049
10 1.3052 10 1.3042
Mean Median Mean Median
1.3044 1.3045 1.3044 1.3042
St. Dev. Var St. Dev. Var.
0.0011 | 0.1112%107° 0.4425 * 1073 | 0.1988 % 1076

E.2.3 5% noise

5% noise (95%) 5% noise (99.7%)

Trial Est. h Trial Est h

1 1.2983 1 1.3083

2 1.3011 2 1.3057

3 1.3061 3 1.3038

4 1.3094 4 1.3052

5 1.3063 5 1.3041

6 1.3098 6 1.3042

7 1.3038 7 1.3036

8 1.3032 8 1.3071

9 1.3070 9 1.3049

10 1.3103 10 1.3085

Mean Median Mean Median

1.3055 1.3062 1.3055 1.3051

St. Dev. Var St. Dev. Var.

0.0039 | 0.1543 « 10~* 0.0018 | 0.3296 % 105
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E.3 1 line 1mm below Sample

E.3.1 No noise: 1.2997

E.3.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. h Trial Est h

1 1.2999 1 1.3002

2 1.3015 2 1.3000

3 1.2980 3 1.3000

4 1.2992 4 1.3002

5 1.2990 5 1.2998

6 1.3000 6 1.2998

7 1.2988 7 1.2985

8 1.2989 8 1.3005

9 1.2991 9 1.2997

10 1.3002 10 1.2995
Mean Median Mean Median
1.2995 1.2992 1.2998 1.2999

St. Dev. Var St. Dev. Var.

0.9643 % 1072 | 0.9298 %« 1076 0.5376 %+ 10~ | 0.2890 %1076

E.3.3 5% noise

5% noise (95%) 5% noise (99.7%)

Trial Est. h Trial Est h

1 1.2888 1 1.3042

2 1.3002 2 1.2995

3 1.2998 3 1.3055

4 1.2889 4 1.3048

5 1.2962 5 1.2940

6 1.3004 6 1.2988

7 1.2988 7 1.3003

8 1.2997 8 1.2954

9 1.2985 9 1.3041

10 1.3023 10 1.2968

Mean Median Mean Median

1.2974 1.2993 1.3003 1.2999

St. Dev. Var St. Dev. Var.

0.0047 | 0.2237 «10~* 0.0041 | 0.1718 % 10™*
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10% noise

10% noise (95%) 10% noise (99.7%)
Trial Est. h Trial Est h
1 1.2919 1 1.2952
2 1.2941 2 1.3023
3 1.3054 3 1.3030
4 1.3072 4 1.3010
5 1.3048 5 1.3114
6 1.3046 6 1.2886
7 1.3071 7 1.2967
8 1.3011 8 1.2955
9 1.3014 9 1.3019
10 1.2820 10 1.2940
Mean Median Mean Median
1.3000 1.3030 1.2989 1.2988
St. Dev. Var St. Dev. Var.
0.0082 0.6733 x 10~* 0.0063 0.3986 * 10~*
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E.4 2 lines 1mm & 1.5mm below Sample

E.4.1 No noise: 1.2998

E.4.2 1% noise
1% noise (95%) 1% noise (99.7%)

Trial Est. h Trial Est h

1 1.2999 1 1.2998

2 1.2988 2 1.2996

3 1.3008 3 1.2997

4 1.3007 4 1.3000

5 1.2997 5 1.3001

6 1.2990 6 1.2997

7 1.3003 7 1.3006

8 1.3001 8 1.3002

9 1.2995 9 1.2994

10 1.3011 10 1.3002
Mean Median Mean Median
1.3000 1.3000 1.2999 1.2999

St. Dev. Var St. Dev. Var.

0.7593 %1072 | 0.5765 % 1076 0.3458 %+ 1072 | 0.1196 1076

E.4.3 5% noise

5% noise (95%) 5% noise (99.7%)

Trial Est. h Trial Est h

1 1.2914 1 1.3012

2 1.3014 2 1.2998

3 1.3016 3 1.2965

4 1.3006 4 1.3037

5 1.3007 5 1.3005

6 1.2993 6 1.2939

7 1.3012 7 1.2995

8 1.2994 8 1.2986

9 1.3057 9 1.3006

10 1.2994 10 1.2988

Mean Median Mean Median

1.3001 1.3007 1.2993 1.2997

St. Dev. Var St. Dev. Var.

0.0036 | 0.1262 «10~* 0.0027 | 0.7071 %1075
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